Recycling Schemes for Consumer Electronics and Cars, a Different Approach

Dr. Kurt Vandeputte
Umicore
Global material technology & recycling group
~ 11,000 people, 50 sites & 15 R&D centers, 20.5 bn € turnover, 3.4 bn € revenues

1. One of three global leaders in emission control catalysts for light-duty and heavy-duty vehicles

2. A leading supplier of key materials for rechargeable batteries and fuel cells

3. The world leading recycler of complex waste streams containing precious and other valuable metals
Increasing product complexity
- making use of almost the entire periodic table of elements

Achzet et al., Materials critical to the energy industry, Augsburg, 2011
The continuing need for mobility…
… creates significant needs for new metals

1900s
Mobility

1950s
Style
+ steel alloys & decoration

2000s
Intelligence
+ electronics
+ aux. electric motors
+ lightweighting

1920s
Power

1980s
Clean air
+ catalyst

> 2010
Low carbon
+ NiMH/Li-ion battery
+ FC stacks
+ e-drives

The Urban Mine becomes bigger and increasingly complex to ‘mine’

Metals*
- Fe
- Pb
- Cu
- Cr
- Al
- Zn
- Pt
- Pd
- Rh
- Ce
- La
- Au
- Ag
- Sb
- Sn
- Ge
- In
- Ga
- Nd
- Pr
- Sm
- Tb
- Dy
- Mg
- Li
- Co
- Ni
- Mn

*non exhaustive list
Urban mining deposits - much richer than primary ores

- **Primary mining**
 - $<< 5$ g/t Au in ore
 - Similar for PGMs

- **“Urban mining”**
 - 100-150 g/t Au; Pd, Ag, Cu, Sn, Sb, … in PC motherboards
 - 200-300 g/t Au; Pd … in cell phones
 - 2000-3000 g/t PGM in automotive catalysts

How to accumulate millions of discarded EoL product into urban mines of a reasonable (= economically viable) size?
The first law of recycling
Be aware of an overambitious recycling efficiency target

The first law of recycling is that recycling only makes sense if there is a net environmental benefit. Recycling needs energy and chemicals and produces emissions and waste. If at a certain point in the recycling process, the process footprint becomes higher than the additional credits for saved environmental impacts thanks to additional recovered products, further recycling does not make sense. Even with innovation and scale leverage effects that could shift the optimum to a higher level of recycling, sooner or later all recycling processes come to an endpoint where further recycling results in net environmental damage.
Effective recycling requires optimised chains

Recycling efficiency determined by weakest link in the chain (usually collection)

\[\text{e.g. Au yield: } 50\% \times 70\% \times 95\% = 33\% \]

Main recycling drivers:
- Economic value, business models & legislation (if well enforced)

Main challenges:
- Insufficient collection, illegal waste exports, sub-standard treatment
 \[\Rightarrow \text{high metal losses & environmental damage} \]
Recycling chain for autocatalysts

Sources for spent catalysts from end-of-life vehicles (ELV) I from cat exchange (workshops)

- Ca. 1,000 dismantlers + 50,000 workshops
- ~100 catalyst collectors (incl. sub-collectors)
- ~10 decanners
- ~10 smelters/refiners globally

Collection logistic
Decanning
Smelting
PGM-Refining

Total efficiency determined by weakest step in the chain
Example: 90% x 70% x 95% x 98% = 59%

Dismantling - Collection - decanning - refining
Recycling supply contribution to autocat PGM demand (globally)

Recycling contribution 2019
(static recycling rate = “recycling input rate”)

Pt: 51%, Pd: 31%, Rh: 36%

*~15yrs time between put on market and end of recycling ⇒ dynamic = EoL recycling rate > 50%

cumulated PGM demand 7830 t out of ~16000 t ever mined
recycled so far 1750 t
still on the road ≈ 4800 t
losses ≈ 1300 t
Example of an expensive product, containing gold …

Mobile phones & E-scrap, *a complex mix* …
- Precious metals: Ag, Au, Pd…
- Base & special metals: Cu, Al, Ni, Sn, Zn, Fe, Bi, Sb, In…
- Hazardous substances: Hg, Be, Pb, Cd, As, …
- Halogens (Br, F, Cl…)
- Plastics & other organic materials
- Glass, ceramics, wood, …
Metal value in a smart phone ≈ 1.10 € (@ prices © Jan-Jul 2020)

[Bookhagen, Bastien (2020)]
Accumulation needed for economic viability

Gross metal value of 1 smart phone: \(~ 1.1 \) €

Net metal value of 5 t (~ 50,000 units) of mobile phones at gate of Umicore recycling plant: \(\leq 50,000 \) €

Gross metal value of 1.8 Billion mobile phones sold globally in 2019: \(~ 2 \text{ Billion} \) €
Quality recycling of metals in a circular economy
Highly efficient recycling processes available

Umicore process yields: >> 95%

Reality Check

But disappointingly low recycling rates for many consumer products (B2C), considering the entire product lifecycle

<table>
<thead>
<tr>
<th>EoL-recycling rates*</th>
<th>> 90%</th>
<th>> 90%</th>
<th>~ 60%</th>
<th>~ 25%</th>
</tr>
</thead>
</table>

* of Au, Ag, Pt, Pd, Rh, global averages
Current barriers to closing the loop

Lifecycle is disconnected @ consumer → 2 independent value chains in B2C

- Missing system approach & overarching collaboration, instead focus on direct customer/supplier interfaces
- No real incentives for OEMs for durable, well repairable & recyclable products
- Little knowledge (and interest) on “fate” of products after their distribution
- Processes, tools and financial systems in companies are tailored to linear business
- @ EoL: More focus on costs/prices than on recycling quality
- Current EPR systems do not reward comprehensive and good recycling, high cost pressure
- OEM focus so far on legal compliance & image, less on genuine circular business models
- Current reported recycling rates do not reflect the physical truth
- Weight based recycling rates focus on mass materials, no incentive to recover low-grade (critical) metals
Recycling concepts in the proposed Battery Regulation
All needed or overshoot?
Key takeaways

- Value chain & application complexity
- Value recycling is like a sailing boat
- Efficient recycling does not make a circular model
- Bridge the Business-to-Consumer and Consumer-to-Business
- Fit-for-purpose policy crucial
Thank you